
4.2 DESIGN EXPLORATION  

4.2.1 Design Decisions  

In this section, we elaborate on the critical choices that shape our solution's framework and execution. 
These decisions, driven by our goal to efficiently utilize the Xilinx Kria K26 board, revolve around 
optimizing DPU resource sharing, managing memory effectively, and implementing parallel processing to 
meet our throughput requirements. Each decision is instrumental in ensuring the success and efficiency of 
our project. 

1. DPU Resource Sharing 

• Decision: To implement two methods for DPU resource sharing: a software only approach and an 
approach using the Zynq UltraScale+'s onboard hardware mutex for enhanced control. 

• Software Approach: We will designed a function, use_DPU(), to manage DPU calls via 
execute_async(), incorporating a queuing system with priority scheduling. This ensures organized 
access to the DPU, prioritizing tasks based on their urgency and importance, which may vary as we 
analyze performance outcomes. 

• Hardware Mutex Integration: In conjunction with our software strategy, leveraging the Zynq 
UltraScale+'s hardware mutex provides a robust mechanism for mutual exclusion at the hardware 
level, offering a failsafe against potential software bottlenecks. 

• Importance: Efficient DPU resource sharing is crucial for maintaining high performance and 
responsiveness of our system, particularly when running multiple algorithms that depend on this 
shared resource. 

2. Memory Management 

• Decision: Adopting a memory affinity approach to divide the available 5GB of DDR memory into 
distinct banks for dedicated process usage. 

• Importance: This strategy ensures that each algorithm has access to its required memory resources 
without interference, reducing contention and latency. It's a pivotal decision for optimizing 
memory utilization and performance, given the physical memory constraints of our FPGA board. 

3. Parallel Processing Implementation 

• Decision: To run the blink detection and eye tracking algorithms on separate threads, with eye 
tracking further split across two threads to handle different frames simultaneously. 

• Importance: This approach is aimed at maximizing throughput and minimizing latency. By 
employing parallel processing, we can address the inherently slow nature of the eye tracking 
algorithm and ensure that the system meets our throughput requirement of <5ms. Parallelism 
allows us to leverage the full computational potential of the FPGA board, ensuring that each 
component operates efficiently and contributes to the overall speed and reliability of the system. 

4.2.2 Ideation  



 

1. Change Hardware 

• One of the idea on changing hardware could be increasing RAM on the board. By having more 
RAM allows each thread to have a larger memory allocation without contention for resources. This 
can prevent slowdowns caused by memory thrashing and improve overall system responsiveness.  

• Instead of using AMD Kria board, we could switch to NVIDIA Jetson AGX Xavier. It features an 
integrated NVIDIA Volta GPU with 512 CUDA cores, along with an eight-core ARMv8.2 CPU 
complex, making it well-suited for both compute-intensive and graphics-intensive tasks. NVIDIA 
GPUs are equipped with CUDA cores and Tensor Cores, which are highly parallelized processing 
units optimized for different types of workloads. Depending on your application's requirements, 
these specialized cores can accelerate computations and speed up processing tasks. 

2. Parallelism 

• Parallelism is one way for us to process multiple tasks together. By executing multiple tasks 
concurrently, parallelism allows for overlapping computation, communication, and I/O operations. 
This can lead to improved overall throughput and reduced latency, as tasks can progress 
simultaneously rather than waiting for one another to complete. 

• Due to the architecture of Kria board of having four separated DDR4 memory, data can be 
processed independently across different subsets or partitions of the dataset. Parallelism enables 
data parallelism by distributing these data partitions across multiple processing units, allowing for 
simultaneous processing of different parts of the dataset and reducing overall processing time. 

3. Memory Management 

• In a multi-threaded environment, concurrent access to shared resources without proper 
synchronization can lead to data corruption or inconsistent states. By using locking mechanisms 
such as mutexes (mutual exclusion locks), semaphores, or read-write locks, developers can ensure 
that only one thread or process accesses a shared resource at a time, preventing data corruption 
and maintaining data consistency. 



• Memory compression algorithms compress data stored in RAM, allowing more data to fit within 
the available memory capacity. This can reduce the frequency of paging (swapping memory 
contents between RAM and disk), which is a costly operation in terms of performance. By keeping 
more data in RAM and reducing the need for frequent disk accesses, memory compression can lead 
to faster overall performance. 

4. DPU Acceleration 

• DPUs are often used to accelerate machine learning inference tasks, such as image classification, 
object detection, and natural language processing. By leveraging dedicated hardware resources 
optimized for matrix operations and neural network inference, DPUs can significantly speed up the 
process of executing machine learning models, leading to faster inference times and improved 
overall performance. 

• Instead of  using DPU to infer machine learning algorithms, ASICs could be used in this 
application. ASICs are custom-designed hardware accelerators optimized for specific tasks or 
algorithms. ASICs can offer superior performance and energy efficiency compared to general-
purpose CPUs or GPUs for specialized tasks like blink detection and eye tracking. Designing and 
manufacturing ASICs can be expensive and time-consuming, but they can provide significant 
performance benefits for specific workloads. 

5. Different Image Processing Techniques 

• Instead of processing the entire image, focus on extracting and processing only relevant features or 
regions of interest. Techniques such as region-based processing, saliency detection, and object 
detection can help narrow down the processing scope, leading to faster execution times. 

• Downsampling involves reducing the resolution of an image, typically by averaging or subsampling 
pixels. This technique can significantly reduce the computational complexity of subsequent image 
processing tasks while maintaining essential information. 

 

4.2.3 Decision-Making and Trade-Off  

DPU Resource Sharing Options 

Options: 

Software-only approach: Utilize a software-based queue and priority scheduling system. 

Combined Software and Hardware Mutex approach: Integrate the software solution with the hardware 
mutex provided by Zynq UltraScale+ for added efficiency and reliability. 

Analysis: 

The software-only approach offers simplicity and flexibility in implementation but might face scalability 
and efficiency issues under high demand. 

The combined approach adds complexity but promises improved reliability and control, ensuring that DPU 
access conflicts are minimized. 

Decision:  

We opted for the combined approach, as the added control and reliability from the hardware mutex 
significantly outweigh the increased complexity. This choice was driven by our priority for system 
robustness and performance under varying loads. 

 

Memory Management Options 



Options: 

Unified Memory Pool: A single, shared memory pool accessible by all processes. 

Memory Affinity: Dividing the available memory into dedicated banks for specific processes. 

Analysis: 

A unified memory pool simplifies memory management but can lead to contention and inefficient use of 
resources. 

Implementing memory affinity introduces complexity in management but ensures dedicated resources, 
reducing contention and potentially increasing performance. 

Decision: 

The memory affinity strategy was selected for its direct benefits in reducing latency and increasing the 
predictability of memory access times, crucial for meeting our throughput targets. 

 

Parallel Processing Strategies 

Options: 

Sequential Processing: Running algorithms one after another, focusing on simplicity. 

Concurrent Execution with Limited Parallelism: Introducing basic parallelism while maintaining some 
sequential operations. 

Full Parallel Processing: Maximizing parallel execution across all algorithms and processes. 

Analysis: 

Sequential processing simplifies development but does not utilize the full capabilities of our hardware, 
leading to potential bottlenecks. 

Limited parallelism offers a balance but may still underutilize available resources. 

Full parallel processing maximizes hardware utilization but requires sophisticated control mechanisms to 
manage resource sharing effectively. 

Decision:  

We embraced full parallel processing, accepting the challenge of complexity for the sake of maximizing 
throughput and efficiency. This strategy aligns with our goal to leverage the FPGA board's capabilities fully, 
ensuring that each component contributes optimally to the system's overall performance. 

Decision-Making Tools 

To facilitate our decision-making, we employed a weighted decision matrix, assigning values to key criteria 
such as performance efficiency, complexity, scalability, and reliability. This quantitative analysis supported 
our qualitative assessments, guiding us toward choices that best align with our project goals and 
constraints. 

  

4.3 PROPOSED DESIGN  

4.3.1 Overview  

Our project involves creating a system on the Kria K26 board that can understand where someone is 
looking and infer their emotions from their eye movements. Imagine it as a smart camera that doesn't just 
see you but tries to understand how you're feeling by paying close attention to your eyes.  



Key Components of Our Design 

DPU: This part of the FPGA is like an accelerator for machine learning applications.  

Memory Management: Because memory is limited, we've set up a system where the memory is divided into 
sections, each dedicated to a specific task. This way, everything runs smoothly without any hold-ups, 
ensuring that the system can keep up with real-time analysis without any lag. 

Parallel Processing: To make the system faster, we can run multiple algorithms at the same time, i.e. 
multitasking. It can run several tasks at the same time (like watching for blinks and tracking eye 
movements) without getting mixed up. This is key to making the system fast and responsive. 

  

How It All Comes Together 

All these parts work together like a well-coordinated orchestra. The DPU is the main processing unit, and 
the DPU scheduling unit ensures that all algorithms share the resource as needed. The memory 
management unit also ensures that all algorithm has sufficient memory to run. Finally, parallel processing 
allows the system to process multiple operation at the same time, achieving a higher throughput. 

The result? A system that can quickly and accurately understand where you're looking and how you're 
feeling, just by watching your eyes. This technology could have many uses, from helping doctors 
understand their patients better to making computers and gadgets more responsive to our needs and 
emotions. 

 

4.3.2 Detailed Design and Visual(s)  

High-Level Overview 

Our design is centered around a highly efficient FPGA-based eye-tracking system, specifically utilizing the 
Kria K26 FPGA board. Below is a detailed overview of our system: 



• FPGA Board (Xilinx Kria K26): Serves as the core platform, integrating all components and 
algorithms. 

• Deep Learning Processing Unit (DPU): A specialized processing IP within the FPGA for executing 
deep learning algorithms. 

• Memory Banks: The FPGA's memory is strategically divided into separate banks, each allocated to 
different processes (e.g., image preprocessing, blink detection, eye tracking) to optimize memory 
usage and system performance. 

• Image Preprocessing: This subsystem prepares raw eye images for analysis, improving the accuracy 
of subsequent detection and tracking algorithms. 

• Blink Detection and Eye Tracking Algorithms: Core algorithms that analyze preprocessed images to 
detect blinks and track eye movements, respectively. These algorithms are critical for determining 
the user's gaze direction and emotional state. 

• DPU Resource Sharing Mechanism: Incorporates a software-based queue with priority scheduling 
and hardware mutex to manage access to the DPU among different algorithms. 

• Parallel Processing Threads: To enhance system throughput and responsiveness, blink detection 
and eye tracking algorithms are executed on separate threads, with eye tracking further split to 
handle different frames simultaneously. 

Sub-System and Component Descriptions 

Image Preprocessing 

• Operation: Enhances image quality for accurate analysis, involving noise reduction, contrast 
adjustment, and scaling. This step is crucial for the reliable performance of downstream algorithms. 

• Technical Requirement: Must process images within milliseconds to ensure real-time performance, 
integrating seamlessly with the eye tracking and blink detection algorithms. 

Blink Detection and Eye Tracking 

• Operation: Utilize machine learning models to interpret preprocessed images, identifying blinks 
and tracking eye movements. Blink detection prioritizes rapid identification of eye closures, while 
eye tracking focuses on determining gaze direction. 

• Integration: Both algorithms request DPU access via the resource-sharing mechanism, with 
scheduling managed to balance urgency and computational load. 

DPU Resource Sharing Mechanism 

• Software Queue with Priority Scheduling: Algorithms queue for DPU access, with priority given 
based on predefined criteria, ensuring critical tasks receive timely processing. 

• Hardware Mutex: Enhances control over DPU access, preventing conflicts and ensuring smooth 
operation across concurrent tasks. 

Memory Management 

• Affinity Approach: Allocates separate memory banks for each major process, reducing contention 
and speeding up access times, which is critical for maintaining high throughput and system 
responsiveness. 

Parallel Processing Threads 



• Implementation: Designed to execute multiple algorithms in parallel, significantly reducing 
processing time and increasing system throughput. Special consideration is given to the eye 
tracking algorithm, which is split across threads to handle different frames, addressing its 
computationally intensive nature. 

This technical description, accompanied by the detailed block diagram, provides a comprehensive 
understanding of our design. It outlines the critical components, their functions, and how they are 
integrated to create a high-performance eye-tracking system. This information should enable another 
senior design team to grasp the intricacies of our solution and consider its implementation. 

 

4.3.3 Functionality  

In a Healthcare Setting 

User Action: A patient sits in front of a diagnostic monitor equipped with our eye-tracking system during a 
mental health assessment. 

System Response: As the patient views various stimuli on the screen, the system analyzes their gaze and 
blinking patterns. It provides real-time feedback to healthcare professionals about the patient's emotional 
state and engagement, assisting in diagnosing or tailoring treatment plans. 

In an Educational Environment 

User Action: A student interacts with an educational software application on a tablet that incorporates our 
eye-tracking technology. 

System Response: The system monitors the student's eye movements to gauge where their attention is 
focused and how they react to different educational content. This information helps the software adapt in 
real-time, offering a personalized learning experience by emphasizing topics that captivate the student's 
interest or revisiting areas where their attention wanes. 

In Personal Computing 

User Action: A user navigates a website using a computer equipped with our eye-tracking system. 

System Response: The system detects the user's gaze direction, allowing for hands-free navigation based 
on where the user is looking. It could also adjust content display based on the user's emotional response to 
different elements, enhancing the browsing experience. 

 

4.3.4 Areas of Concern and Development  

1. High Throughput and Low Latency: The system's capability to process data at a high rate, with a 
target throughput of <5ms, ensures real-time responsiveness. This is crucial for applications 
requiring immediate feedback based on eye movement analysis, such as adaptive learning software 
or patient emotional state monitoring in healthcare settings. 

2. Efficient Resource Utilization: Through intelligent design choices like DPU resource sharing, 
memory affinity, and parallel processing, our system optimizes the limited resources of the FPGA 
board. This ensures that the device operates smoothly, even under the demand of running multiple 
complex algorithms simultaneously. 



3. Scalability and Flexibility: The modular approach to algorithm implementation and resource 
management allows for flexibility in system deployment across various contexts, from healthcare to 
personal computing. This adaptability ensures that our design can evolve to meet emerging user 
needs and technological advancements. 

Primary Concerns for Delivering a Product/System 

1. Algorithm Efficiency and Accuracy: The effectiveness of the eye-tracking and blink algorithms 
heavily depend on the accuracy and efficiency of the underlying software system. Ensuring these 
algorithms can perform under real-world conditions without significant errors or delays is crucial. 

2. Hardware Limitations: While we've designed our system to optimize resource utilization on the 
Kria K26 board, physical constraints such as memory capacity and DPU availability remain a 
challenge. 

  

4.4 TECHNOLOGY CONSIDERATIONS  

We are using the AMD Kria KR260, a development platform for Kria K26 SOMs, in our design. The Kria K26 
System-on-Module (SoM) by AMD offers a compact and integrated solution for embedded applications, 
providing a balance of performance, power efficiency, and versatility. 

Strengths 

• The KR260 is equipped with high-performance interfaces tailored for robotics and industrial 
applications. These interfaces likely include GPIO, UART, I2C, SPI, and CAN ports, facilitating 
seamless integration with various sensors, actuators, and control systems. 

• The KR260's support for Kria K26 SOMs offers versatility, allowing developers to choose the 
appropriate SOM configuration based on their application requirements. This scalability ensures 
that the platform can address a wide range of robotics and industrial use cases. 

• Leveraging the capabilities of the Kria K26 SOMs, the KR260 platform offers scalability in terms of 
processing power, memory, and connectivity options. This scalability enables developers to scale 
their robotic systems to meet evolving performance demands. 

Weaknesses 

• The advanced features and capabilities of the KR260 platform comes with a higher upfront cost 
compared to simpler development platforms. This could be a limiting factor for developers with 
budget constraints or hobbyists exploring robotics projects. 

• Developing applications for robotics and industrial applications can be complex, requiring expertise 

in hardware, software, and system integration. While the KR260 platform aims to simplify 

development with native ROS 2 support and high-performance interfaces, there may still be a 

learning curve for developers new to robotics. 

Trade-offs 

Performance vs. Power Consumption 

The high-performance interfaces and processing capabilities of the KR260 platform may result in higher 
power consumption, especially in battery-powered robotics applications. Developers must balance 
performance requirements with power efficiency to ensure optimal system operation and longevity. 



Versatility vs. Specialization 

While the KR260 platform offers versatility in supporting various robotics and industrial applications, it 
may be optimized for specific use cases within these domains. Developers should assess whether the 
platform's features align with their project requirements or if a more specialized development platform 
would be more suitable. 

 Solutions 

1. NVIDIA Jetson Series 

• NVIDIA Jetson series of embedded platforms, such as Jetson Nano, Jetson Xavier NX, and Jetson 
AGX Xavier, offer high-performance GPU acceleration suitable for running multiple machine 
learning algorithms concurrently. 

• These platforms feature CUDA support, allowing developers to leverage GPU parallelism for 
accelerated inference tasks. 

• The Jetson series also provides support for popular machine learning frameworks like TensorFlow, 
PyTorch, and ONNX, facilitating easy deployment of machine learning models. 

2. Google Coral Dev Board 

• The Google Coral Dev Board is another option for accelerating machine learning inference tasks at 
the edge. 

• It features Google's Edge TPU (Tensor Processing Unit) for high-performance AI acceleration with 
low power consumption. 

• The Coral Dev Board supports TensorFlow Lite and TensorFlow Lite Micro, making it suitable for 
running multiple machine learning algorithms concurrently in resource-constrained environments. 

Design Alternatives 

1. Distributed Computing Architecture 

• Instead of relying on a single powerful device, distribute the computational load across multiple 
edge devices interconnected in a network. Each edge device can be responsible for processing a 
subset of the input data or running specific machine learning algorithms. Use communication 
protocols such as MQTT or gRPC for inter-device communication and coordination. This approach 
allows for scalability and fault tolerance, as well as efficient utilization of resources across the 
network. 

2. Custom ASIC-based Solution 

• Design custom Application-Specific Integrated Circuits (ASICs) tailored to the specific 
requirements of your machine learning algorithms. Develop dedicated hardware accelerators 
optimized for parallel execution of inference tasks. Leverage the high performance and power 
efficiency of ASICs to achieve the desired throughput and latency targets. This approach requires 
significant upfront investment in ASIC design and fabrication but offers the potential for 
unparalleled performance and energy efficiency. 

4.5 DESIGN ANALYSIS   



Our team has not implemented anything on the board. We only tested the eye tracking algorithm from 
previous team on the board. Our team has built the environment on the board and set up a workstation 
that could communicate with the board. As for now, the image semantic segmentation has been tested on 
the PC. In the upcoming days, we will implement blink algorithm onto the board.  

Here's a breakdown of the situation and potential plans for future design and implementation work: 

1. Validation on Target Hardware: The first step would be to validate the proposed design on the 
Xilinx Kria K26 FPGA board. This involves porting the implemented algorithms and components 
onto the board and testing their performance in a real-world environment. 

2. Identifying Challenges: Once the design is tested on the board, it's crucial to identify any challenges 
or discrepancies between the expected and observed performance. This could include issues related 
to resource constraints, hardware limitations, or unexpected behavior. 

3. Iterative Optimization: Following validation and identifying challenges, an iterative optimization 
process would be necessary to address any issues and fine-tune the implementation. This may 
involve optimizing algorithms for hardware acceleration, adjusting resource allocation strategies, or 
refining parallel processing techniques. 

4. Testing and Validation: Rigorous testing and validation on the target hardware platform are 
essential to ensure that the system meets performance requirements and functions reliably under 
various conditions. 

5. Documentation and Reporting: Comprehensive documentation of the implementation process, 
including challenges faced and solutions developed, should be maintained. This documentation 
will serve as a valuable resource for future iterations of the project and knowledge transfer. 

6. Feasibility Assessment: Throughout the implementation and optimization process, ongoing 
feasibility assessments should be conducted to evaluate whether the design goals are achievable 
within the constraints of the hardware platform. 

7. Addressing Build Issues: If any build issues are encountered during the implementation process, 
they should be addressed promptly through troubleshooting, debugging, and potentially revising 
the design or implementation approach. 


